skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garudadri, Harinath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The frequency-dependent nature of hearing loss poses many challenges for hearing aid design. In order to compensate for a hearing aid user’s unique hearing loss pattern, an input signal often needs to be separated into frequency bands, or channels, through a process called sub-band decomposition. In this paper, we present a real-time filter bank for hearing aids. Our filter bank features 10 channels uniformly distributed on the logarithmic scale, located at the standard audiometric frequencies used for the characterization and fitting of hearing aids. We obtained filters with very narrow passbands in the lower frequencies by employing multi-rate signal processing. Our filter bank offers a 9.1× reduction in complexity as compared to conventional signal processing. We implemented our filter bank on Open Speech Platform, an open-source hearing aid, and confirmed real-time operation. 
    more » « less
  2. We propose a new adaptive feedback cancellation (AFC) system in hearing aids (HAs) based on a well-posed optimization criterion that jointly considers both decorrelation of the signals and sparsity of the underlying channel. We show that the least squares criterion on subband errors regularized by a p-norm-like diversity measure can be used to simultaneously decorrelate the speech signals and exploit sparsity of the acoustic feedback path impulse response. Compared with traditional subband adaptive filters that are not appropriate for incorporating sparsity due to shorter sub-filters, our proposed framework is suitable for promoting sparse characteristics, as the update rule utilizing subband information actually operates in the fullband. Simulation results show that the normalized misalignment, added stable gain, and other objective metrics of the AFC are significantly improved by choosing a proper sparsity promoting factor and a suitable number of subbands. More importantly, the results indicate that the benefits of subband decomposition and sparsity promoting are complementary and additive for AFC in HAs. 
    more » « less
  3. null (Ed.)
  4. While deep neural networks (DNNs) have achieved state-of-the-art results in many fields, they are typically over-parameterized. Parameter redundancy, in turn, leads to inefficiency. Sparse signal recovery (SSR) techniques, on the other hand, find compact solutions to over-complete linear problems. Therefore, a logical step is to draw the connection between SSR and DNNs. In this paper, we explore the application of iterative reweighting methods popular in SSR to learning efficient DNNs. By efficient, we mean sparse networks that require less computation and storage than the original, dense network. We propose a reweighting framework to learn sparse connections within a given architecture without biasing the optimization process, by utilizing the affine scaling transformation strategy. The resulting algorithm, referred to as Sparsity-promoting Stochastic Gradient Descent (SSGD), has simple gradient-based updates which can be easily implemented in existing deep learning libraries. We demonstrate the sparsification ability of SSGD on image classification tasks and show that it outperforms existing methods on the MNIST and CIFAR-10 datasets. 
    more » « less